(三)探索分数乘整数的计算方法。
1.独立计算。
谈话:尝试计算×6,你觉得怎样算好就怎样算,不仅要会算,还要把道理说清楚。
学生活动,教师巡视指导,了解信息,并相机让学生把几种典型做法板书在小黑板上。
2.小组内说想法。
3.算法交流,分析比较:黑板上有序板贴学生的不同做法:
①×6=0.5×6=3(米)
②×6=+++++==3(米)
③×6===3(米)
④×6==(米)
⑤×6==(米)
谈话:请同学们认真观察黑板上几种不同的做法,只看结果,判断哪些是对的?哪些是错的?
明确:第④和第⑤种做法是错误的,因为结合实际情况,所需6根布条总长度不能小于或等于一根布条的长度。
(1)请学生当小老师讲解每种算法的计算道理,鼓励学生互相质疑、答疑。老师针对一些重点问题进行提问:
×6=0.5×6=3(米)怎么会想到用这种方法解决问题的?(引导学生体会转化的数学思想与方法。)
×6和+++++这两部分相等吗?为什么?是怎样得来的?
在方法③中,为什么分母2不变,单单只把分子1和6相乘呢?
(2)课件演示方法③的计算道理。
(3)再回顾×6==和×6==两种做法,指出错误原因。
【设计意图:在教学过程中,教者注意充分挖掘文本资源,留给学生充足的时间和空间,放手让学生运用已有的知识和经验自主探索计算方法,极大程度地发挥了学生的主体性,产生了多种算法,有效地落实“解决问题策略多样化”的理念。“为什么分母2不变,单单只用分子1去乘6”,这是理解的难点,在这里,教者不断地“追问”,看似多用了时间,多费了笔墨,实则提升了学生对问题的认识和理解,也为后面总结计算方法提供了有力的支撑。】
|